Delta function

i.e. Dirac delta function, unit impulse

δ(x)=\delta(x)=\infty, if x=0x=0, else (when x0x \neq 0), δ(x)=0\delta(x)=0. δ(x)dx=1\int_{-\infty}^{\infty} \delta(x) \, dx = 1

a fundamental property of the delta function:

f(x)δ(xa)dx=f(a)\int_{-\infty}^\infty f(x) \delta(x-a)\, dx = f(a) and for ϵ>0\epsilon > 0, aϵa+ϵf(x)δ(xa)dx=f(a)\int_{a-\epsilon}^{a+\epsilon} f(x) \delta(x-a)\, dx = f(a)

additional identities (for xax \neq a):

δ(xa)=0δ(ax)=1|a|δ(x)δ(x2a2)=12|a|[δ(x+a)+δ(xa)]\begin{align} \delta(x-a)=0 \\ \delta(a \, x) = \frac{1}{|a|} \delta(x) \\ \delta(x^2 - a^2) = \frac{1}{2|a|}[\delta(x+a) + \delta(x-a)] \end{align}


one of the Singularity functions, μ0(t)δ(t)\mu_0(t) \triangleq \delta(t) with impulse/Dirac delta tf(λ)δ(λτ)dλ={0for t<τf(τ)for t>τ\int_{-\infty}^t f(\lambda) \delta(\lambda - \tau)d\lambda = \begin{cases}0 \quad \text{for } t < \tau \\ f(\tau) \quad \text{for } t > \tau \end{cases}

Sifting property:


Discrete form: Kronecker delta

Derivative of Heaviside step function


References:

  1. P. A. M. Dirac, The Principles of Quantum Mechanics. Oxford University Press, 1930.
  2. https://en.wikipedia.org/wiki/Dirac_delta_function
  3. https://mathworld.wolfram.com/DeltaFunction.html
  4. https://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html